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We give a proof that for the Ising model on the Bethe lattice, the limiting 
Gibbs state with zero effective field (disordered state) persists to be pure for 
temperature below the ferromagnetic critical temperature T~ r until the critical 
temperature T s~ of the corresponding spin-glass model. This new proof revises 
the one proposed earlier. 
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1. The quest ion of  the possibi l i ty of  the d isordered  l imiting Gibbs  
state (i.e., with zero effective field) of  the ferromagnetic  Ising model  on the 
Bethe latt ice to be pure  below the ferromagnetic  critical tempera ture  Tc has 
been formula ted  as an open p rob lem in refs. 2 and  3 (some nonhomogeneous  
pure Gibbs  states were const ructed in refs. 4 and  5). In ref. 1 it was proved 
that  the d isordered  phase is pure up to the spin-glass critical tempera-  

sc  ture Tc , but  as was found out  later  in correspondence  between the au thor  
of  ref. 1 and  Hans -Ot to  Georgi i ,  in the recursive formula used in ref. 1 for 
the p robabi l i ty  measures  vx [see the formula (3.7) be low] ,  the mult ipl ier  
a(hv) was missed both  in numera to r  and  denominator .  A corrected version 
of  the p roo f  tr) was based on an inequali ty valid for the Bethe latt ice z* of 
degree k ~< 6. In the present  note we give a new p roo f  valid for all k. 
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2. Let rk be the Bethe lattice of degree k/> 2 such that exactly (k + 1) 
edges come out of any vertex. Then the Ising model is defined by the 
Hamiltonian 

H(tr) = - ~,, Jxya(x) a(y) (2.1) 
x ,  y 

where the sum is over pairs of nearest neighbors x, y and a ( x ) =  +_ 1. The 
ferromagnetic model corresponds to Jxy = J > 0, while the spin-glass model 
corresponds to Jxr = +_J ( J > 0 ) ,  where {Jxy} are independent random 
variables with Pr{Jxy = +J} = Pr{Jxy = - J }  = 1/2 for any pair xy. Denote 

0 = tanh fl, fl = J/k B T (2.2) 

where T is the temperature. Then for the ferromagnetic model the critical 
value is 0 [ = 1/k (see, e.g., ref. 3), while for the spin-glass model 0csc _- 1/x/~; 
see, e.g., ref. 7. The main result of this note is the following theorem. 

T h e o r e m .  The limiting Gibbs state with zero effective field (dis- 
ordered phase) is pure for 0 < 0 ~ 0csG. 

R e m a r k .  For 0 < 0 ~< 0 v the limiting Gibbs state is unique, and so 
trivially pure. On the other hand, for 0 > 1/,r the disordered phase is not 
pure. (2"4) Thus our main result concerns the interval [ l/k, 1/v)k ]. 

3. Let C = ( V, L, i) be the Cayley tree of order k with a root vertex 
x .  ~ V. Here V is the set of vertices, L is the set of edges, and i is the 
incidence function which corresponds to each edge I ~ L  its endpoints 
x~, x2e V. There is a distance d(x,y) on V which is the length of the 
minimal path from x to y, assuming that the length of any edge is 1. 
Denote by 

IV, = {x~  V: d(x , ,  x ) = n }  

the sphere of radius n on V, and by 

V, = { x e  V: d(x , ,  x) <~n} 

the ball of radius n, so that 

m = 0  

For any x ~ IV., n = 0, 1, 2 ..... denote by 

S ( x ) =  { y e  W . + , : d ( x , y ) =  1} 
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Let {h(x), x ~ V} be a set of real numbers satisfying for each x ~ V the 
recursive relation 

h(x)= y" fo(h(y)), fo(h)=artanh[Otanh(h)] (3.1) 
y ~ S ( x )  

Define the Gibbs probability distribution on the configurational space 

.S(V.)= {a.= {a(x)= +_l, xe  V.}} 

by the formula 

/ ~ , ( a , ) :  Z~-' exp [fl ~ o'(x) o ' (y)+ Z h(x)a(x)] (3.2) 
k x ,  y ~  l"n:d(x ,  y ) =  1 x ~ Wn J 

Then (3.1) implies the consistency of/~. for different n, so that there exists 
a Gibbs measure/~ on the infinite configurational space 

z ( v )  = +1, v}} 

whose finite-dimensional distributions are p. .  The function h(x), x s V, 
which satisfies (3.1) is called an effective field. Remark that h(x) - 0  satisfies 
(3.1), so that the finite-dimensional distributions 

/z~(tr.) = Z~-' exp [fl ~ tr(x) tr(y)] (3.3) 
x ,  ), e V n : d ( x ,  y )  = 1 

are consistent and generate a Gibbs measure/z'~, the disordered phase. 
To prove that / t  ~ is pure, we will prove that the spins {tr(x), x~  V.} 

and {tr(x), x~  WN} are asymptotically independent with respect to /z ~', 
when N ~ ~ and n is fixed. To that end we first fix N > 0 and define recur- 
sively for every x ~ VN_ ~ a random variable hx such that 

with the initial data 

hx= ~', fo(hy), Vxe VN_2 (3.4) 
y ~ S ( x )  

hx=~ ~ a(y),  Vx~W1v_l (3.5) 
y ~ S ( x )  

Equations (3.4), (3.5) define hx as a function of a(y), y e WNc~ Vx, where 
Vx is the subtree growing from x. It is to be noted that in general the 
random variables {h x, x e VN_ l} depend on N. 
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L e m m a  3.1. For every n ~ < N - 1 ,  the joint distribution of 
a , =  {a(x), x e  V,} and ht")= {hx, xE W,,} with respect to / t  # is given by 

l t~ ' ( t r , , ,h tm)=Z-~expl  fl ~ tr(x) a ( y ) +  ~ hxtr(x)l 
x,  y e  V n : d ( x , y ) =  1 x E  Wn 

x e  Wn 

(3.6) 

where the probability distributions vx(h) are defined by the recursive 
equations 

Zh,.,...,,,::flh,.)+ ... +fth~l=h [I-L~stx) a(ho) v,(h,)] 
vx(h) = 

Ehr....,h, [1-Iv~stx) a(ho) vv(ho)] 
, VxeV~v_2 (3.7) 

where 

S ( x ) = ( y  ..... z), f (h )=fo(h) ,  a ( h ) = [ l + ( 1 - O 2 ) s i n h 2 h ]  ~/2 (3.8) 

and by the initial condition 

v~(h)=Z -1 ~" 1, Vx~ W~_ 1 (3.9) 
a ( y ) , . . . , o ( z ) : f l [ a ( y ) +  . . .  + a ( z ) ]  = h  

Remark. Lemma 3.1 allows the following extension. Let /t be a 
Gibbs measure generated, according to (3.2), by some set of real num- 
bers {h(x), x e  V} which satisfy the consistency equations (3.1), and let 
{hx, x ~ WN_ ~} be random variables defined through (3.4) and (3.5). Then 
the joint distribution /l(tr,,,h ~')) has the form (3.6) with probability 
distributions vx(h) defined by the recursive equations (3.6) and by the 
initial condition 

vx(h) = Z -1 ~, exp[h(y) tT(y)+ ..- + h(z) a(z)], 
o ( y ) , . . . , ~ t z ) :  8 [ a ( y ) +  -.- + a ( z ) ]  = h  

Vx~ Wu- i  (3.10) 

When h(x ) -O ,  (3.10) reduces obviously to (3.9). If, in addition, the 
coupling constant Jxy depend on xy, then again the formulas (3.2)-(3.8), 
(3.1 O) are valid with 

fl = Jxy/ka T, 0 = tanh( Jxy/kB T) 

and some natural modifications in these formulas. The proof of this 
extension of Lemma 3.1 is similar to the proof of Lemma 3.1. 
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Proof of  Lemma 3.1. The proof of (3.7) is based on the following 
identity: 

~.. exp[fltr(x)tr(y)+hytr(y)] =Za(hy) exp[fo(he)tr(x)] 
o ( y )  = +1 

if a(x)= +1 

(3.11) 

according to where Z=cosh f l .  To prove this identity, notice that 
a(x) = -t-1, it reduces to two identities: 

exp(fl + he) + exp( - f l  - -  h y )  = Z a ( h y )  exp fo(hy) 

exp( - f l  + hy) + exp(fl - by) = Za(hy) exp[ -fo(hy) ] 

If we divide the first identity by the second one, we obtain 

exp(fl + by) + exp( - f l  - by) 
exp( - fl + hy) + exp(fl - ~y) = exp [ 2fo(h e) ] 

which follows easily from the formula exp(2 artanh z) = (1 +z)/(1 - z ) .  If 
we multiply the first identity by the second one, we obtain 

cosh 2 fl + sinh 2 h e = Z2a2(hy) 

which follows easily from the formula a2(h)= 1 +sinh2h/coshEfl. Thus 
(3.11 ) is proved. Multiplying (3.11) over y E S(x), we obtain (3.7) by induc- 
tion. Equation (3.9) follows directly from (3.3). Lemma 3.1 is proved. I 

4. By (3.9) and (3.7) the measures vx(h ) coincide for all x e  W,, so 
we will denote then by v,(h). By (3.9) and (3.7) v,(h) is symmetric, hence 

Let 

Lemma 4.1. 

ProoL 

~. sinh hv,( h ) = 0 
h 

D. = )-" sinh 2 hv,,(h) 
h 

If kO 2 ~< 1, then 

D,,_ t <~ kO2D, 

It is convenient to rewrite (3.4) and (3.7) in the form 

k 

h= ~ f(hj), f (h )  =fo(h) 
j = l  

(4.1) 
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a n d  

D e n o t e  

v . _ x ( h ) =  
Eh,.....h~:/th,)+ ... +fth,)=h [ l--I :=,  a(h./) v,,(hy)] 

(4.2) 

s = s inh h, s} = sinh hy, ty = t a n h  hy 

We have 

t a n h 2 [ f ( h l )  + " .  + f ( h k ) ]  
s 2 = s inh 2 h = s i n h 2 [ f ( h l )  + . . .  + f ( h k ) ]  = 1 - - t a n h 2 [ f ( h l )  + . . .  + f ( h k )  ] 

a n d  

tanh(Xl  + . . .  + Xk) = 
Eo~d~ E.,', <:~ < ... <: ,  yj , ' "y j ,  
E .... , E j , < j ~ < . . .  < j ,  y j , . . . y j , '  

Y l = t a n h  x} 

SO 

t a n h [ f ( h l )  + . . .  + f ( h k ) ]  = 
Eoddp OP ~y, <:2 ..... yp tj --. typ 

5:  . . . .  , o. gj, <j~<... <j, tj,... O, 

a n d  

_ . . . . .  , , t ;  
s 2 = s inh 2 h - O p  - -  - -  

\ E  . . . .  p Xy,<y2< <-6 ty .  tyJ 

( X od,:t t, 0P ~--y, <./2 <"-- <Jp ty...typ "~21 - ,  
x [  I - \Z---~-~,p~-: y, <: ' ..... , tj., --T&/_l 

(Eo~.  e,' ~j, <:. <... <:, iv... t:,) ~ 

II~:=, ( 1 - O Z t : )  

Us ing  the symmet ry  of  v.(h), we o b t a i n  tha t  

D. _ 1 = ~] s inh2 hv._ l(h) 
h 

 xo dp O 'Iz,, ... < , ' ; 2 , ' " r  

xI-lff=, [ ( I  -02t}) - '  a(h}) v,,(hy)] J 

y.,,,,...,~, EH~=, a(h;) v.(h;)] 
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Now we substitute 

l+s~  

and obtain 

On_ ] 
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�9 s 2 - - - s  2 1-[j.j,,...,# (1 + s~)]'~ (X,,,.....,,, [ X o ~  0 2" Zj, <j, . . . . .  ~ ,, ,~ 

\ • FI~= ] ~- ] (h j )  v.(hj) ] 

X,,,.....,,~ [YI~= x a(h,.) v.(hj)]  

(4.3) 

To estimate the RHS of (4.3) we use the FKG inequality. 

I . emma 4.2 (FKG inequality). Assume that b(x), c(x), and d(x) are 
functions on a finite set X such that 

d(x) >t 0 Vx e X 

[b(x])-b(x2)][C(Xl)-C(X2) ] >~0 Vx], x 2 e X  

y, d(x) > O, Z c(x) d(x) > 0 
x x 

Proof. We have 

Then 
•x b(x) c(x) s(x) >>- Y~x b(x) d(x) 

Zx c(x) d(x) Xx d(x) 
(4.4) 

0 < ~ [b(x]) -b(x2)][c(x]) -c(x2)]  d(x]) d(x2) 
X l ,  x 2  

= 3 ~ b(Xl) c(xl) d(Xl) E d(x2) - 2  ~ b(Xl) d(x]) ~ c(x2) d(x2) 
Xl X2 Xl :r 

which implies (4.4). | 

Applying the FKG inequality to the RHS of (4.3), we obtain 

( .s2 2 ) ]~h,.....hk [Xodd~ 02" Y'.j,<], . . . .  <'p , a - " s ;  I-Ij.j,,....# (1 + 4 ) ]  
k • FI )=I  vn(hj) 

Dn_ ] <~ 
Zh,....,hk [1--I~= X a2(hj)v.(hj)] 

which gives 

D._ ] <~ Zoddp CPkO2pDp.( 1 + D.) k-p k! 
[1 + ( l _ 0 2 )  D.]k ' C ~ = p ! ( k _ p )  ! 

(4.5) 
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I . emma 4.3. If kO 2 <~ I, then 

t",pA2p r~pt D n ) k - P  
~"odd  p ~ k  v ~ .~ 1 + ~< kO2D n 

[1 + ( I - - 0 2 )  D. ]  k (4.6) 

Proof. Denote for a fixed D. > 0. 

Cp gl2p 13 P[ k "J ~ n k  A(O)  ~-~.oddp 1 -{-Dn) k -p  ~-'~oddp C~02(p-1)D~-l( 1 + D.) k-p 
- kOZD,,[1 +(1 - -02)  D,,] k k[1 +(1  -02)D, ,]  k 

Then (4.6) is equivalent to 

A(O) <~ 1 

Observe that A(O) is an increasing function of 0, so it is sufficient to prove 
that 

A(k -I/2) ~< 1 (4.7) 

By the Newton binomial formula, 

Put 

Then 

In addition, 

p - p  p D,,)  k - p  A(k_l/2) = ) - ~ ' o d d p  Ckk D,(1 + 
D.[1 + ( 1 - k  - l )  D.] k 

(1 + D, ,+k- l  D . ) k - ( 1  + D . - k - l D , , )  k 
2D.[1 + ( 1 - k  -I)  D,,] k 

{[1 +(1  + k - ' )  Dff[1 +(1 - k - ' )  D,,]} k -  1 

2D,, 

1 +(1  + k - l ) D "  1= 2D. 
~ ~ 1 + ( 1 - k - 1 ) D , ,  k + ( k - 1 ) D , ,  

2 
0 < Z < k _  1 when 0 < D . < ~  

k z  
D, 

2 - ( k - 1 ) z  

(4.8) 
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and (4.7) is equivalent [due  to (4.8)] to 

(1 -F z)k-- 1 ~<2D,=  
kz 

1 - -  ( k  - -  1 ) z / 2  

Expanding bo th  sides of  the last inequality in Taylor  series in z, we reduce 
it to 

z +  m 
k ( k -  1) z2 + k ( k -  ) ( k -  2 ) z3 + . . .  

2 6 

2 
< ~ k z + k ( k -  l _ _ _ . . ~ ) z 2 + k ( k -  I)  z3 + . . .  (4.9) 

2 4 

which is obvious. Thus (4.7) is proved and this finishes the proof  of  
L e m m a  4.3. | 

F rom (4.5) and Lemma  4.3 we obtain (4.1). Lemma4 .1  is proved. I 

Now we observe that  (4.9) can be strengthened to 

k(k - 1 )(k - 2) kz + k( k - 1__..~) z2 + z3 + ... 
2 6 

kz + [ k ( k -  )/2] z 2 + [ k ( k -  1)2/4] z 3 + --- 
<~ 

1 + [ ( k -  1)2/12] z 2 

which leads to 

( 1  -[-z) k -  1 <~ 
2D, 

1 + [ ( k -  l)2/12]{2D,,/k+ ( k -  1) D , ] }  2 

and then we get the following result. 

L e m m a  4.4.  We have 

Dn_  1 
kO2Dn 

1 + [ ( k -  1)2/3]{D,,/[k+(k - 1) D , ] }  2 
(4.10) 

This is useful when k0 2=  1. 

5. Proof of  the Theorem. The inequality (4.10) says that  

lira D , , = 0  (5.1) 
/ V - - n  ~ oo 
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for 0 < 0 ~< 1/x/~. Following the line of reasoning of Section 3 from ref. 1, 
one can now check that (5.1) implies the extremality of the disordered 
state /z #. This means that for any E > 0, n > 0 and any configuration 
a, c ,Y,(V,), there exist N >  n and a set g2 N c Z'(WN) such that: 

(i) /z r > 1 -- e. 

(ii) I/z'~(a, l ar <e, Vo'(N) F-~QN . 

This gives our main result. 1 

One of the open problems concerns the purity of the limiting Gibbs 
states in the case of nonzero external field. Another problem is the charac- 
terization of the limiting states for the random field model. The ground 
states for this model for binary distribution were examined in ref. 8. 
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